Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Clin Chim Acta ; 548: 117510, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37562522

RESUMO

BACKGROUND: The mortality rate of colorectal cancer (CRC) can be decreased with effective screening and early diagnosis. Exosomes are released from cancer cells into the bloodstream, and circulating exosomes may serve as novel biomarkers. This study aimed to identify a sensitive and rapid method of exosome collection and measurement using specific antibodies. METHODS: ExoCounter, a high-sensitive exosome-counting system, allows the identification of exosomes without enrichment or purification, based on the identification of the transmembrane protein-CD147-on serum exosomes that are associated with CRC. RESULTS: Receiver operating characteristic curves between healthy donors and CRC patients were described and assessed by CD147-specific exosomes (exo-CD147), CEA, and CA19-9. And area under curves for exo-CD147, CEA, and CA19-9 were 0.827 (95%CI: 0.764-0.891), 0.630 (95%CI: 0.536-0.724), and 0.659 (95%CI: 0.559-0.759), respectively. Drawing a clinical decision curve of exo-CD147 for the diagnosis of CRC metastases showed that when the threshold probability of exo-CD147 was between 20% and 92%, the net clinical utilization rate was higher than for all patients with or without metastases. A nomogram was constructed using multivariate COX regression analysis to select significant variables such as the high CD147 group (>34 × 105 particles). Calibration curves for 1-, 3-, and 5-year survival rates of CRC patients showed that the actual 1-, 3-, and 5-year survival rates were in excellent agreement with the survival rates predicted by the nomogram. CONCLUSIONS: The increased CD147 expression in exosomes could serve as a diagnostic and prognostic biomarker for CRC.


Assuntos
Basigina , Neoplasias Colorretais , Exossomos , Humanos , Biomarcadores Tumorais , Antígeno CA-19-9 , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia , Exossomos/metabolismo , Prognóstico , Basigina/análise
3.
Respir Res ; 24(1): 140, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259101

RESUMO

BACKGROUND AND AIMS: This study aimed to investigate the expression of plasma versican and plasma exosomal versican in non-small cell lung cancer (NSCLC) and its correlation with clinicopathological features, and to evaluate its diagnostic performance in NSCLC and its predictive function for NSCLC incidence and metastasis risk. MATERIALS AND METHODS: There were 110 instances of NSCLC, 42 cases of benign lung disease, and 55 healthy controls from September 2018 to October 2020 at Tongji Hospital Affiliated to Tongji University. Blood was collected and plasma was separated before surgery, and plasma exosomes were extracted by ExoQuick kit. Morphological and molecular phenotype identification of exosomes was performed by transmission electron microscopy, Nanosight particle tracking analysis, and western blotting. Plasma versican and plasma exosomal versican were detected in all subjects to assess their expression levels and diagnostic value in NSCLC. Clinicopathological data were collected to explore correlations between abnormal plasma versican and plasma exosomal versican expression and clinicopathological parameters. Receiver operating characteristic (ROC) curve was used to judge its diagnostic performance in NSCLC, and binary logistic regression analysis was used to predict the risk of NSCLC incidence and metastasis. RESULTS: Plasma versican and plasma exosomal versican expression in NSCLC patients was significantly upregulated and was significantly higher in T3 + T4 patients compared with T1 + T2 patients (P < 0.05); the levels of plasma versican and plasma exosomal versican were positively correlated with lymph node metastasis, distant metastases (e.g., brain, bone), and mutation(e.g., EGFR,ALK)in NSCLC patients (all P < 0.05). Furthermore, ROC curve analysis showed that plasma versican and plasma exosomal versican had higher AUC values than NSE, CYFRA21-1, and SCC, and better diagnostic performance in NSCLC patients. However, the AUC and diagnostic performances of plasma versican and plasma exosomal versican in advanced-stage NSCLC patients were not shown to be significantly better than CEA. The results of binary logistic regression analysis showed that high levels of plasma exosomal versican had higher predictive value for lung cancer incidence, while high levels of plasma versican had higher predictive value for lung cancer metastasis. CONCLUSION: Our findings showed that plasma versican and plasma exosomal versican might be potential diagnostic markers for NSCLC. High plasma exosomal versican expression can be used as a predictor of NSCLC risk and high plasma versican expression can be used as a predictor of NSCLC metastasis risk.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/metabolismo , Versicanas , Biomarcadores Tumorais/genética
4.
Clin Epigenetics ; 15(1): 60, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029420

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) has a high incidence and recurrence rate. N6-methyladenosine (m6A) modification of RNA has become a promising epigenetic marker in tumors. The dysregulation of both RNA m6A levels and m6A regulator expression levels reportedly affects essential biological processes in various tumors. Long non-coding RNAs (lncRNAs), a subgroup of RNAs over 200 nucleotides in length that do not code for protein, can be modified and regulated by m6A, but the relevant profile in LUAD remains unclear. RESULTS: The m6A levels of total RNA were decreased in LUAD tumor tissues and cells. Multiple m6A regulators were abnormally expressed at both the RNA and protein levels, and were related in expression patterns and functionally synergistic. Our microarray revealed 2846 m6A-modified lncRNA transcripts as well as its molecular features, 143 of which were differentially m6A-modified and manifested a negative correlation between expression levels and m6A modification levels. More than half of the differentially m6A-modified lncRNAs associated with dysregulated expression. The 6-MRlncRNA risk signature was a reliable indicator for assessing survival time of LUAD patients. The competitive endogenous regulatory network suggested a potential m6A-induced pathogenicity in LUAD. CONCLUSIONS: These data have demonstrated that differential RNA m6A modification and m6A regulator expression levels were identified in LUAD patients. In addition, this study provides evidence increasing the understanding of molecular features, prognostic values, and regulatory functionalities of m6A-modified lncRNAs in LUAD.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Prognóstico , RNA Longo não Codificante/metabolismo , Perfilação da Expressão Gênica , Neoplasias Pulmonares/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Metilação de DNA , Adenocarcinoma/genética , Pulmão/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-35297352

RESUMO

BACKGROUND: Ovarian cancer remains a leading cause of mortality in women. It is known that long non-coding RNA (lncRNA) controls various biological processes and pathogenesis of many diseases, including cancers. This study aimed to determine whether LINC00936 and microRNA-221-3p (miR-221-3p) influence the laminin alpha 3 chain gene (LAMA3) in the development of ovarian cancer. METHODS: The expressions of LINC00936, miR-221-3p, and LAMA3 in ovarian cancer and adjacent tissues were assessed. Furthermore, ovarian cancer cells were transfected with vectors with overexpressed LINC00936, miR-221-3p mimic, miR-221-3p inhibitor, and si-LAMA3 to elucidate their functions in ovarian cancer cell proliferation, migration, invasion, angiogenesis, and tumorigenesis. The binding relationship between LINC00936 and miR-221-3p and the relationship between miR-221-3p and LAMA3 were verified to explore the mechanism of action of LINC00936 in ovarian cancer. LINC00936 binds to miR-221-3p as a ceRNA and regulates the expression of LAMA3. RESULTS: LINC00936 and LAMA3 were poorly expressed, while miR-221-3p was highly expressed in ovarian cancer tissues. Over-expression of LINC00936 contributed to decreasing miR- 221-3p expression and increasing LAMA3 expression. LINC00936 overexpression or miR-221- 3p silencing downregulated the levels of PCNA, MMP-2, MMP-9, and VEGF and decreased cell proliferation, migration, invasion, angiogenesis, and ovarian cancer tumorigenesis. CONCLUSION: Collectively, overexpression of LINC00936 suppressed the development of ovarian cancer by competitively binding to miR-221-3p and controlling LAMA3 expression. These results could serve as a novel theoretical base for the treatment of ovarian cancer.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/genética , MicroRNAs/genética
6.
Front Cell Dev Biol ; 10: 1051380, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531952

RESUMO

Exosomes are tiny vesicles produced by a wide range of cells that contain complex RNA and protein. In the diagnosis, treatment, and prevention of illness, they offer great potential. In vitro engineering technique modifies exosomes to produce designed exosomes that include nucleic acids, proteins, and medicines, and are targeted to particular tissues or cells. Their applications range from tumor imaging and gene therapy to vaccine production and regenerative medicine to targeted medication delivery. Many disciplines have promising futures for using this technology. In this review, we'll look at the potential therapeutic usefulness and use of engineered exosomes in a variety of human illnesses with various systemic manifestations.

7.
Front Microbiol ; 13: 1029966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466634

RESUMO

Candida albicans (C. albicans) is the most common causative agent of invasive fungal infections in hospitals. The body defends against and eliminates C. albicans infection by various mechanisms of immune response, and the latter mechanism of immune evasion is a major challenge in the clinical management of C. albicans infection. The role of macrophages in combating C. albicans infection has only recently been recognized, but the mechanisms remain to be elucidated. This review focuses on the interaction between C. albicans and macrophages (macrophages), which causes the body to generate an immune response or C. albicans immune escape, and then regulates the body's immune microenvironment, to explore the effect of C. albicans virulence resistance vs. macrophage killing and clarify the role and mechanism of C. albicans pathogenesis. In general, a thorough understanding of the molecular principles driving antifungal drug resistance is essential for the development of innovative treatments that can counteract both existing and emerging fungal threats.

8.
Front Cell Infect Microbiol ; 12: 1093327, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569192

RESUMO

Infectious diseases are the leading cause of death in both adults and children, with respiratory infections being the leading cause of death. A growing body of evidence suggests that bacterially released extracellular membrane vesicles play an important role in bacterial pathogenicity by targeting and (de)regulating host cells through the delivery of nucleic acids, proteins, lipids, and carbohydrates. Among the many factors contributing to bacterial pathogenicity are the outer membrane vesicles produced by the bacteria themselves. Bacterial membrane vesicles are being studied in more detail because of their potential role as deleterious mediators in bacterial infections. This review provides an overview of the most current information on the emerging role of bacterial membrane vesicles in the pathophysiology of pneumonia and its complications and their adoption as promising targets for future preventive and therapeutic approaches.


Assuntos
Infecções Bacterianas , Doenças Respiratórias , Criança , Humanos , Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo
9.
Cells ; 11(24)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36552841

RESUMO

A study by Tsvetkov et al. recently published a proposed novel form of copper-induced cell death in Science; however, few studies have looked into the possible mechanism in soft tissue sarcoma (STS). Herein, this study sought to investigate the function of cuproptosis-related genes (CRGs) in the development of tumor-associated immune cells and the prognosis of sarcoma. Herein, this study aimed to explore the role of cuproptosis-related genes (CRGs) in the development, tumor-associated immune cells, and the prognosis of sarcoma. METHODS: The prognostic model was established via the least absolute shrinkage and selection operator (LASSO) algorithm as well as multivariate Cox regression analysis. The stromal scores, immune scores, ESTIMA scores, and tumor purity of sarcoma patients were evaluated by the ESTIMATE algorithm. Functional analyses were performed to investigate the underlying mechanisms of immune cell infiltration and the prognosis of CRGs in sarcoma. RESULTS: Two molecular subgroups with different CRG expression patterns were recognized, which showed that patients with a higher immune score and more active immune status were prone to have better prognostic survival. Moreover, GO and KEGG analyses showed that these differentially expressed CRGs were mainly enriched in metabolic/ions-related signaling pathways, indicating that CRGs may have impacts on the immune cell infiltration and prognosis of sarcoma via regulating the bioprocess of mitochondria and consequently affecting the immune microenvironment. The expression levels of CRGs were closely correlated to the immunity condition and prognostic survival of sarcoma patients. CONCLUSIONS: The interaction between cuproptosis and immunity in sarcoma may provide a novel insight into the study of molecular mechanisms and candidate biomarkers for the prognosis, resulting in effective treatments for sarcoma patients.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Prognóstico , Sarcoma/genética , Fatores de Risco , Algoritmos , Microambiente Tumoral
10.
Cancers (Basel) ; 14(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36358812

RESUMO

The human commensal microbiome existing in an internal environment is relatively consistent with that of the host. The presence of bacterial dysbiosis, on the other hand, promptly results in the termination of this symbiotic association. The altered microbial structure in the lung may be responsible for the development of lung cancer by controlling the host's inflammatory response and influencing a variety of immunological pathways. More and more studies have pointed to the fact that the commensal microbiota plays a vital role in both the development of tumors and the body's response to lung cancer treatment. Microbiome dysbiosis, genotoxicity, virulence effect, and epigenetic dysregulations are some of the potential mechanisms that may lie behind the process of tumorigenesis that is mediated by microbiome. Other potential mechanisms include regulating host immune activity through a variety of pathogenic factors, dysregulating host metabolism as a result of microbiome alterations, and microbiome dysbiosis. In this historical overview, we go through some of the more recent mechanistic discoveries into the biological processes that are involved in lung cancer that are caused by bacteria. Without a question, obtaining a greater knowledge of the dynamic link between the lung microbiome and lung cancer has the potential to inspire the development of innovative early detection and customized treatment methods for lung cancer.

11.
Front Oncol ; 12: 942964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353553

RESUMO

The underlying molecular mechanisms and evolutionary patterns of lung cancer metastasis remain unclear, resulting in a lack of effective indicators for early diagnosis of metastasis. We retrospectively analyzed 117 patients with primary non-small cell lung cancer (NSCLC) admitted to Tongji Hospital of Tongji University in 2021, of which 93 patients with tumor metastasis were set as the metastasis group. 24 patients without metastasis were set as the non-metastasis group. The differences of each index in the two groups of patients and the expression levels in different TNM stages were compared. This study intends to evaluate the diagnostic value and net clinical benefit of common blood-related indicators Neutrophil/lymphocyte (NLR), lymphocyte/monocyte (LMR), High density lipoprotein/neutrophil (HNR), High density lipoprotein/monocyte (HMR) and combined assays in NSCLC metastasis for the early diagnosis of patients with NSCLC metastasis. It was found that the level of NLR was higher in metastatic NSCLC than non-metastatic, but the level of LMR, HNR and HMR was lower. The levels of NLR, LMR, HNR and HMR in patients with different TNM stages showed that NLR levels increased with TNM stage, while LMR, HNR and HMR levels decreased. The threshold probability range of the 4 combined tests was greater and the overall clinical benefit rate was higher compared to the individual tests. Our findings suggest that NLR, LMR, HNR and HMR have better diagnostic value for NSCLC metastasis. This study provides a clinical basis for investigating the mechanisms by which immune cells and lipid metabolism-related proteins remodel the microenvironment prior to NSCLC metastasis.

12.
J Oncol ; 2022: 2164897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405249

RESUMO

Lung cancer has a complex etiology involving multiple regulatory systems. Uncertainty about the biology and evolution of lung cancer has made it difficult to improve its poor prognosis. To create efficient therapeutic targets and optimal molecular screening tools for lung cancer, the most important task seems to be to understand how it develops and progresses. The expression and regulation of GTPBP4 in non-small cell lung cancer (NSCLC) are not well understood. Using methods such as knocking down GTPBP4 in lung cancer cells and establishing a mouse lung cancer model, we found that the expression of GTPBP4 was upregulated in human lung adenocarcinoma cells and tissues, and that knocking down the expression of the GTPBP4 gene in A549 and Calu-1 lung adenocarcinoma cells can inhibit the proliferation of lung adenocarcinoma cells and reduce their invasion ability. The results of the mouse lung cancer model showed that the lung weight and the number of lung surface nodules decreased significantly in the LLC-GTPBP4 KO group. The mechanism by which GTPBP4 regulation affects the progression of lung adenocarcinoma may be related to the regulation of EMT. From this study, new research ideas emerge to explore GTPBP4 as a biomarker and therapeutic target for early diagnosis and treatment of lung cancer.

13.
Front Mol Biosci ; 9: 968458, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203873

RESUMO

Background: The polypyrimidine tract-binding protein (PTBP) nuclear ribonucleoprotein family of proteins, including PTBP1, PTBP2 and PTBP3, regulate the process of cell proliferation, differentiation, apoptosis and carcinogenesis. PTBPs exhibit oncogenic effects in certain tumors. However, the role of PTBPs in pan-cancer remains unclear. Our study examined the clinical significance and mechanism of PTBPs in pan-cancer. Methods: We compared the expression of PTBPs in paired and unpaired tissue samples from the Cancer Genome Atlas (TCGA) database. Univariate and multivariate Cox regression, Kaplan-Meier curves, and time-dependent receiver operating characteristic (ROC) curves were used to assess the prognostic significance of PTBPs in pan-cancer. The cBioPortal database also identified genomic abnormalities in PTBPs. TISIDB, TCGA, and Cellminer were used to investigate the relationship between PTBP expression and immune subtypes, immune checkpoint (ICP) genes, tumor mutational burden (TMB), microsatellite instability (MSI), tumor-infiltrating immune cells, and chemosensitivity. cBioPortal was used to search for PTBP co-expressing genes in pan-cancer, and GO and KEGG enrichment analyses were performed to search for PTBP-related signaling pathways. Results: PTBPs were shown to be widely upregulated in human tumor tissues. PTBP1 showed good prognostic value in ACC, KIRP, and LGG; PTBP2 in ACC and KICH; and PTBP3 in ACC, LGG, and PAAD, with AUC >0.7. PTBPs were differentially expressed in tumor immune subtypes and had a strong correlation with tumor-infiltrating lymphocytes (TILs) in the tumor microenvironment (TME). In addition, PTBP expressions were related to ICP, TMB, and MSI, suggesting that these three PTBPs may be potential tumor immunotherapeutic targets and predict the efficacy of immunotherapy. Enrichment analysis of co-expressed genes of PTBPs showed that they may be involved in alternative splicing, cell cycle, cellular senescence, and protein modification. Conclusion: PTBPs are involved in the malignant progression of tumors. PTBP1, PTBP2 and PTBP3 may be potential biomarkers for prognosis and immunotherapy in pan-cancer and may be novel immunotherapeutic targets.

14.
Front Public Health ; 10: 923457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937269

RESUMO

Objective: The purpose of this study is to determine the diagnostic value and net clinical benefit of interleukin-10 (IL-10), interleukin-17 (IL-17), procalcitonin (PCT), and combination tests in patients with sepsis, which will serve as a standard for sepsis early detection. Patients and methods: An investigation of 84 sepsis patients and 81 patients with local inflammatory diseases admitted to the ICU of Tongji University Hospital in 2021. In addition to comparing inter-group variability, indicators relevant to sepsis diagnosis and therapy were screened. Results: LASSO regression was used to examine PCT, WBC, CRP, IL-10, IFN-, IL-12, and IL-17. Multivariate logistic regression linked IL-10, IL-17, and PCT to sepsis risk. The AUC values of IL-10, IL-17, PCT, and the combination of the three tests were much higher than those of standard laboratory infection indicators. The combined AUC was greater than the sum of IL-10, IL-17, and PCT (P < 0.05). A clinical decision curve analysis of IL-10, IL-17, PCT, and the three combined tests found that the three combined tests outperformed the individual tests in terms of total clinical benefit rate. To predict the risk of sepsis using IL-10, IL-17, and PCT had an AUC of 0.951, and the model's predicted probability was well matched. An examination of the nomogram model's clinical value demonstrated a considerable net therapeutic benefit between 3 and 87%. Conclusion: The IL-10, IL-17, and PCT tests all have a high diagnostic value for patients with sepsis, and the combination of the three tests outperforms the individual tests in terms of diagnostic performance, while the combined tests have a higher overall clinical benefit rate.


Assuntos
Pró-Calcitonina , Sepse , Biomarcadores , Calcitonina , Peptídeo Relacionado com Gene de Calcitonina , Humanos , Interleucina-10 , Interleucina-17 , Precursores de Proteínas , Sepse/diagnóstico
15.
Front Cell Infect Microbiol ; 12: 959793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937699

RESUMO

The vaginal microbiota, the host endocrine system, the vaginal anatomy, and the local mucosal immunity comprise the vaginal microbiota, which interacts with each other to maintain the balance of the vaginal microbiota, which maintains female reproductive health. Puberty, menstruation, pregnancy, and menopause are four phases women go through during their reproductive and post-reproductive years. Vaginal microbiota composition and abundance are heavily influenced by estrogen and progesterone, which start at puberty and continue during the reproductive years in a dynamic balance with some fluctuations. Estrogen promotes proliferation of vaginal epithelial cells and increases glycogen storage, while progesterone lyses vaginal epithelial cells, facilitating the release of glycogen to maintain normal pH. This review summarizes the latest national and international evidence on the composition and distribution of vaginal microecology in women during different physiological and pathological periods and proposes a hormone-driven microbial diversity hypothesis to explain the temporal patterns of vaginal microbial diversity during the female reproductive cycle and menopause. A relatively balanced vaginal microecological system has a positive effect on the maintenance of female health. An imbalance in the ratio of flora can lead to susceptibility to infections or reproductive complications. The study of human microecology and its role in the development and progression of human disease is essential for the prevention, diagnosis, and treatment of related obstetric and gynecologic conditions.


Assuntos
Microbiota , Progesterona , Estrogênios , Feminino , Glicogênio , Humanos , Gravidez , Vagina
16.
J Immunol Res ; 2022: 7280977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795532

RESUMO

Ulcerative colitis (UC) is an inflammatory bowel disease characterized by persistent colon inflammation. N6-methyladenosine (m6A) methylation is one of the most prevalent RNA modifications with key roles in both normal and illness, but m6A methylation in ulcerative colitis is unknown. This research investigated m6A methylation in UC. We examined the expression of known m6A RNA methylation regulators in UC using the Gene Expression Omnibus database (GEO database). First, we used m6A regulators to examine m6A change in UC samples. These two patient groups were created by clustering three m6A gene expression datasets. These genes were then utilized to build an m6A gene network using WGCNA and PPI. These networks were built using differentially expressed genes. The 12 m6A regulators were found to be dispersed throughout the chromosome. The study's data were then connected, revealing positive or negative relationships between genes or signaling pathways. Then, PCA of the 12 m6A-regulated genes indicated that the two patient groups could be discriminated in both PC1 and PC2 dimensions. The ssGSEA algorithm found that immune invading cells could be easily distinguished across diverse patient groups. Both groups had varied levels of popular cytokines. The differential gene analysis of the two samples yielded 517 genes like FTO and RFX7. It found 9 hub genes among 121 genes in the blue module, compared their expression in two groups of samples, and found that the differences in expression of these 9 genes were highly significant. The identification of 9 possible m6A methylation-dependent gene regulatory networks suggests that m6A methylation is involved in UC pathogenesis. Nine candidate genes have been identified as possible markers for assessing UC severity and developing innovative UC targeted therapeutic approaches.


Assuntos
Adenosina/análogos & derivados , Colite Ulcerativa , Adenosina/genética , Adenosina/imunologia , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/genética , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Humanos , RNA/genética , RNA/imunologia
17.
J Oncol ; 2022: 3922299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813860

RESUMO

Acute lung injury (ALI) is a severe form of sepsis that is associated with a high rate of morbidity and death in critically ill individuals. The emergence of ALI is the result of several factors at work. Case mortality rates might range from 40% to 70%. Researchers have discovered that epigenetic alterations are important in the pathophysiology of ALI and that using epigenetic inhibitors may help reduce symptoms. In embryonic development, circadian rhythm, the cell cycle, and cancer, methylation of m6A seems to be relevant all along the way. According to recent research, posttranscriptional methylation is a key player in the development of alveolar lymphoma. In this study, we clustered ALI based on m6A-related factors, analyzed different classes of immune cell enrichment and inflammatory cytokine expression, screened clustered differential genes for ALI to construct coexpression networks, screened key ALI genes potentially regulated by m6A modifications, and then typed the disease based on key genes to compare the consistency of different clustering results. Our findings have revealed a hitherto undiscovered prognostic sign and a therapeutic target for ALI therapy in m6A and immune invading cells, respectively.

18.
J Oncol ; 2022: 4499876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35799607

RESUMO

Application of extracellular vesicles (EVs) for cancer treatment has been well-documented. We probed into the potential role of cervical cancer cells-secreted EVs by transferring miR-146a-5p in cervical cancer. After characterization of miR-146a-5p expression in clinical cervical cancer tissue samples, gain- and loss-of-function experiments were implemented to test the effect of miR-146a-5p on the invasion, epithelial-mesenchymal transition (EMT), and anoikis in cervical cancer cells. EVs were isolated from high-metastatic cervical cancer cells, after which their effects on the malignant behaviors of low-metastatic cervical cancer cells were assessed in a co-culture system. Luciferase assay was implemented to validate the putative binding relationship between miR-146a-5p and WWC2, followed by further investigation of downstream pathway (Hippo-YAP). Finally, nude mouse lung metastasis model was developed for in vivo validation. miR-146a-5p was elevated in cervical cancer tissues and high miR-146a-5p expression promoted the metastatic potential of cervical cancer cells through enhancing their invasiveness and anoikis resistance, and inducing EMT. Furthermore, miR-146a-5p carried by EVs secreted by highly metastatic cervical cancer cells could promote the metastasis of low-metastatic cervical cancer cells. Mechanistically, miR-146a-5p targeted WWC2 to activate YAP, by which it inhibited the phosphorylation of cofilin, and promoted the process of cofilin-mediated depolymerization of F-actin to G-actin. In vivo data demonstrated that EVs-carried miR-146a-5p promoted tumor metastasis through the WWC2/YAP axis. Cancer-derived EVs delivered pro-metastatic miR-146a-5p to regulate the actin dynamics in cervical cancer, thereby leading to cancer metastasis. This experiment highlighted an appealing therapeutic modality for cervical cancer.

19.
J Immunol Res ; 2022: 3119375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733921

RESUMO

Lactic acid is a "metabolic waste" product of glycolysis that is produced in the body. However, the role of lactic acid in the development of human malignancies has gained increasing interest lately as a multifunctional small molecule chemical. There is evidence that tumor cells may create a large amount of lactic acid through glycolysis even when they have abundant oxygen. Tumor tissues have a higher quantity of lactic acid than normal tissues. Lactic acid is required for tumor development. Lactate is an immunomodulatory chemical that affects both innate and adaptive immune cells' effector functions. In immune cells, the lactate signaling pathway may potentially serve as a link between metabolism and immunity. Lactate homeostasis is significantly disrupted in the TME. Lactate accumulation results in acidosis, angiogenesis, immunosuppression, and tumor cell proliferation and survival, all of which are deleterious to health. Thus, augmenting anticancer immune responses by lactate metabolism inhibition may modify lactate levels in the tumor microenvironment. This review will evaluate the role of lactic acid in tumor formation, metastasis, prognosis, treatment, and histone modification. Our findings will be of considerable interest to readers, particularly those engaged in the therapeutic treatment of cancer patients. Treatments targeting the inhibition of lactate synthesis and blocking the source of lactate have emerged as a potential new therapeutic option for oncology patients. Additionally, lactic acid levels in the plasma may serve as biomarkers for disease stage and may be beneficial for evaluating therapy effectiveness in individuals with tumors.


Assuntos
Ácido Láctico , Neoplasias , Glicólise , Humanos , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Microambiente Tumoral
20.
J Oncol ; 2022: 5242437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756082

RESUMO

Treatment of cancer in humans requires a thorough understanding of the multiple pathways by which it develops. Recent studies suggest that nuclear receptor coactivator 4 (NCOA4) may be a predictive biomarker for renal cancer. In the present work, TCGA, GEPIA, and several bioinformatics approaches were used to analyze the NCOA4 expression patterns, prognostic relevance, and association between NCOA4 and clinicopathological features and immune cell infiltration. We investigated NCOA4 expression in malignancies. Low NCOA4 expression was associated with poor overall survival in individuals with malignancies such as cholangiocarcinoma, colon adenocarcinoma, and clear cell renal carcinoma. We also analyzed NCOA4 DNA methylation in normal and primary tumor tissues and investigated possible functional pathways underlying NCOA4-mediated oncogenesis. In conclusion, downregulation of NCOA4 is associated with poor prognosis, and NCOA4 may be a predictive biomarker for COAD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...